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§ 1. Introduction

We use &= (zy, *, w,) 10 denote 4 veclor with real coeffients and m=
(my, +=+, my), I=(, ++-, ;) and @= (ay, *, a,) the veotors with integral components.

We use the notations z=max (1, |z|), |m]|=my--m,, (M, 2) =2 ma, the scalar
. =1

product of m and « and Q (&) a polynomial of . We also use O(¢, +++, n) to denote
a positive constant depending on §, +--, n only, but not always with the same value.
Consider the problem of approximate solution of the equation

with the initial condition
u(0, x) =p(x) =20 (m)e*™m®,
where the Fourier coeffients C (m) satisfy
|C(m) | <C/|m|®
in which C'(>0) and a(>1) are two constants.

)u, 0<I<T, —oo<a,<oo(1<r<s) )

—(2a—1)(s—1)

—2x_ =@a-1)s=1)
We use p to denote prime number and N=[p** 1 (Inp) **' ], where [«]
denotes the integral part of . We also use the following notations:

1° f(t, )T denotes the set of numbers f(t, -‘;Tk), 1<k<p,
2° I'ff= X C(t, m)e™m,
Imi<N

where

ak\
f(t, ——)B 2=ri(a.m)k/p,

8 Dl (g I77) »

oy -0y
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where r1+--+1r,=r, 1=0(1<4<s),

& [7P=, |f17dm,

where @, denotes the s-dimensional unit cube 0<z; <1 (1<KE<s).
Theorem 1. Suppose that Q(a)is a polynomial such that the solution of (1)satisfies

lu(t, )| <c(s)|p(x)].* Then for any given p, there exisis an a—a(p) such that
—a(2a—1) 2at(s—1) (2)

R=u(t, &) —I'v(t, ®)T|<0c(a, s)p **' (Inp) *=1' ,
Where v (3, )T denotes the solution of the system of the ordinary differential equation

T
———d/v (gf, x) = Q (D;’[p,o'...,o, e, -Dg: -~-,0,1) v (tl x) ' (3)

with inttial condition
v(0, &) =D} .. p(@)T,

This gives a modification of a result due to Pabemrknit B. C.' which will be
. (a+1)(s—1)

i-a
obtained, if the right hand side of (2) is replaced by Cc(a, s)p * (In p)
If p and a(p) in Theorem 1 are changed by F,..; and (1, F,) respectively for

the oase s=2, where F,= \/1?(( 1+5/—S_ )” —( 1_;/—8_ )"), (n=1, 2, ---) denote the

Fibonacei sequence, then the right hand side of (2) may be improved slightly by

—a(2a—1) 3a~1

Cc(a)F, * T (In3F,)" 7T,

The vectoro @ is called a good lattioe point modulo p by Hlawka, E. or an optimal
coefficient modulo p by LopoGos, H. M. and a table of good lattice points is contained
in many books for the purpose of practical use, for example the book of Hua ILoo
Keng and Wang Yuan™

§ 2. Several lemmas.

Lemma 1. For any given p, there ezists @ such that any non-zero solution l of the

congruence
(a, )=0 (mod p)
satisfies
I12]>ec(s)p/ (Inp)*-* (€Y
and
o <o(a, pe(in ), ®)

(@,550moa » | L)%
where 2 denotes @ sum with an exception I=0, (Cf, Baxsaios, H. C. ©*)
Lemma 2. Suppose that || >3° and that 1<M<|1|/3°. Then

1 7]~
i Tl me <ot MY

(Cf. Wang Yuan [4]).

*) For example, @(x) is a positive definite quadratic form.
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In the following, the veotor @ is taken such that (4) and (5) are satisfied.
Lemma 8. Ws¢ have
I (e®d:aNT 2xi(m, x)
@D e
(a,l=m)=0(mod p)
In particular,

I (e2ﬂ(l.:)) T _ g2xilx)
for |1| <N and p>e(s).
Proof

P
I <92zi(l.x)) T _ 1 \NY g2wia, Dk/pg—2% 4@, m)k Pg2%i(m, 2) 2 g2xi(m,x)
Imi<¥N P k=1

Imi<N
{(a,l-m)=0(mod p) -
The Lemma is proved.

Lemma 4. Suppose that p(x) =e>*™® ywhere |[m|<N. Then R=0.
Proof Suppose that

u(t, &) =u(t)g>>tm®
and
v(t, )T=0(t) ()T,
where u(0) =v(0) =1. Substituting into (1) and (3), we bhave

QU —w (e — Qu—u(t)Q(2wim) g

and
Py (t) (ezxi(m.x)) T__ 2 (t) Q(Zm:im) (e‘.’wi(m,z)) T

by Lemma 3. Henoce
v (1) =u(t)Q(2wim)
: o (1) = (1)@ (2mim),

Since u(t) and v(¢) satisfy the same ordinary differential equation with the same

and

initial value, therefore u(t) =v(t) and the Lemma follows.
Lemma §. Let
pa(®)= 31 O(matrimo,
Then

—a(2a—1) 4a3(s—1)

[Tpa(2)7|<Cc(a, 5)p **~! (Imp) **
Proof It follws from Lemma 3 that

[Tos(@)71P= [ | 3} OOT @=0)|?de
de=

Imi<XN

_ C (l) e2x¢(m.:)
(a.l—i’t’)léo(mw 1)
Let I—m=mn. Then

o 2 1Y
I Tps()7[*<0” 2 ((,,,,.Eo(mm) l|n+m||")

cos sy (L al_ylmle o5 1

Imi<N (a.mS0moanp \ [M][n+m|

c )’.

Gy ( ti >N
(a,]—m)=0(mod p)

Imi<N

xe

n n ” L (aq,]’=0(mod p) Wrn'l—’—
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Since
=l
|m||n+m]
and we may suppose that p>c(s), by Lemmas 1 and 2 we have
| Tpa(®)7|2<C%(a, ) N2*p~2*(In p)22c-D

—2a(2a—1) 4ax(s—1) o

<020 (a, 3) e 4a—1 (ln p) 4a—1

<2

The Lemma is proved.
Lemma 6. If (0, &)= (Tps(x)?)?, then

—a(2a—1) 2a2(s—1)

[T(, )T]<Co(a, )p 1 (mp) =1,
Proof For any given I, we shall prove that the congruenoce
(@, I—m) =0 (mod p) (6)
has at most 1 solution e satisfying

im|<N.
In fact, if there are two different vectors m and m’ satisfying (6), then m—m’ %0,

(a, m—m")=0(mod p)
and
|m—m'| <2:N

which leads 10 a contradiction with Lemma 1. Hence by Lemma 8, we have
I'(e?zi(l.z))’.l‘:() or e?m(m.z)’

where |m|<N. Consequently, it follows from Lemma 4 that the solution u(¢, ) of

the partial differential equation

2_g(2 .. 2,

ot oxy’ T ox* /)
{u(O, x) =g ()T

and I'v (¢, )T are identical, where v (¢, )T is the solution of the ordinary differen-

tial equation

dt
v(0, &)"= (L'pa(x)7)",
Hence by Lemma 5, we have
170(, )T =@, 2)]<c(s) |u(0, ®)|<c(s)| Ips(2)7]

—a2a—1) 2a3(s—1)

<Ce(a, p T (np) =

T
{M=Q(D£O,...,o, cor, Dl0)o(t, )T,

The Lemma is proved.

§ 3. The proof of Theorem 1.

Let
(%) =g1(x) +@a (),

(@)= 3 O(m)etsim
Imi<

where
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and

pa(®) = 3 C(m)e*=om=,
Let u, (3, @) and uy(%, &) denote the solutions of the equation (1) with the initial
conditions u; (0, &) =@,(x) and u,(0, &) =g@a(x) respectively. Further let v,(¢, )T
and v,(¢, )T be the solutions of the equation (8) with the initial conditions v, (0, )T
=DJ .. op1(x)T and v5(0, &)T=D] .. (pa(x)T respectively, Then

u(t, o) =ui(t, &) +us(t, x)

2(t, ®)T=0v:(t, £)T+0a(t, 2)7,

and

It follows that
lu(t, ) —Lo:(t, @)7] =0
by Lemma 4 and that
—a(2a—1) 2a3(s—1)

[ T2s(t, 2)7[<Ce(a, )p ** (np) *=*
by Lemma 5. Since

uate, @[ <a0, &)} =(] 0@ 12aw) “<0( 2 Tars)

>N
2a—1 a—1 a(20—1) 2a3(s—1)

<C¢(a, )N * (Inp) 7 <Ce(e, 8)p ** (Inp) ™1,

we have
lu(t, ®) —I'v(t, |7)?=|us(, &) +ua(, &) —Lv:.(¢, )T —Tws(2, x)7|?
<8(Jus @ty @) ~Iva(t, ®)T|+us @, @) [*+ [I'0a(t, )7|7)

—2a(2a—1) 4a8(z—1)

<020 (a’ s)p 4a—1 (]n ) 4a—1

The Theorem Ts proved.
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