A NOTE ON THE APPROXIMATE SOLUTION OF THE CAUCHY PROBLEM BY NUMBER-THEORETIC NETS

WANG YUAN

(Institute of Mathematics, Academia Sinica)

Dedicated to Professor Su Bu-chin On the Occaion of his 80th Birthday and his 50th Year of Educational Work

§ 1. Introduction

We use $\boldsymbol{x}=(x_1, \dots, x_s)$ to denote a vector with real coefficients and $\boldsymbol{m}=(m_1,\dots,m_s)$, $\boldsymbol{l}=(l_1,\dots,l_s)$ and $\boldsymbol{a}=(a_1,\dots,a_s)$ the vectors with integral components. We use the notations $\bar{\boldsymbol{x}}=\max{(1,|\boldsymbol{x}|)}$, $\|\boldsymbol{m}\|=\bar{m}_1\cdots\bar{m}_s$, $(\boldsymbol{m},\boldsymbol{x})=\sum_{i=1}^s m_ix_i$ the scalar product of \boldsymbol{m} and \boldsymbol{x} and $Q(\boldsymbol{x})$ a polynomial of \boldsymbol{x} . We also use $C(\xi,\dots,\eta)$ to denote a positive constant depending on ξ,\dots,η only, but not always with the same value.

Consider the problem of approximate solution of the equation

$$\frac{\partial u}{\partial t} = Q\left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_s}\right) u, \ 0 \leqslant t \leqslant T, \ -\infty < x_{\nu} < \infty (1 \leqslant \nu \leqslant s)$$
 (1)

with the initial condition

$$u(0, \boldsymbol{x}) = \varphi(\boldsymbol{x}) = \sum C(\boldsymbol{m}) e^{2\pi i (\boldsymbol{m}, \boldsymbol{x})}$$

where the Fourier coefficients $C(\mathbf{m})$ satisfy

$$|C(\boldsymbol{m})| \leqslant C/\|\boldsymbol{m}\|^a$$

in which C(>0) and $\alpha(>1)$ are two constants.

We use p to denote prime number and $N = [p^{\frac{2\alpha}{4\alpha-1}}(\ln p)^{\frac{-(2\alpha-1)(\alpha-1)}{4\alpha-1}}]$, where [x] denotes the integral part of x. We also use the following notations:

1°
$$f(t, x)^T$$
 denotes the set of numbers $f(t, \frac{ak}{p})$, $1 \le k \le p$,

$$2^{\circ} \Gamma f^{T} = \sum_{|\boldsymbol{m}| \leq N} \widetilde{C}(t, \boldsymbol{m}) e^{2\pi i (\boldsymbol{m}, \boldsymbol{x})},$$

where

$$\begin{split} \widetilde{C}\left(t,\ \boldsymbol{m}\right) = & \frac{1}{p} \sum_{k=1}^{p} f\!\left(t,\frac{\boldsymbol{a}k}{\boldsymbol{p}}\right) \! e^{-2\pi i (\boldsymbol{a},\boldsymbol{m})k/\boldsymbol{p}}, \\ 3^{\circ} & D_{r_{1},\cdots,r_{s}}^{T} f^{T} \! = \! \left(\frac{\partial^{r}}{\partial x_{1}^{r_{1}}\!\cdots\!\partial x_{s}^{r_{s}}} \boldsymbol{\Gamma} f^{T}\right)^{T}, \end{split}$$

Manuscript received March 30, 1981.

where $r_1 + \cdots + r_s = r$, $r_i \geqslant 0 (1 \leqslant i \leqslant s)$,

$$4^{\circ} \|f\|^2 = \int_{G_{\bullet}} |f|^2 dx,$$

where G_s denotes the s-dimensional unit cube $0 \le x_i \le 1$ $(1 \le i \le s)$.

Theorem 1. Suppose that $Q(\boldsymbol{x})$ is a polynomial such that the solution of (1) satisfies $||u(t, \boldsymbol{x})|| \leq c(s) ||\varphi(\boldsymbol{x})||$.* Then for any given p, there exists an $\boldsymbol{a} = \boldsymbol{a}(p)$ such that

$$R = \|u(t, \boldsymbol{x}) - \Gamma v(t, \boldsymbol{x})^T\| \leq Cc(\alpha, s) p^{\frac{-\alpha(2\alpha-1)}{4\alpha-1}} (\ln p)^{\frac{2\alpha^{3}(s-1)}{4\alpha-1}},$$
(2)

Where $v(t, x)^T$ denotes the solution of the system of the ordinary differential equation

$$\frac{dv(t, \mathbf{x})^{T}}{dt} = Q(D_{1,0,\dots,0}^{T}, \dots, D_{0,\dots,0,1}^{T}) v(t, \mathbf{x})^{T}$$
(3)

with initial condition

$$v(0, \boldsymbol{x}) = D_{0,\dots,0}^T \varphi(\boldsymbol{x})^T$$

This gives a modification of a result due to Pabendrum B. C.⁽¹⁾ which will be obtained, if the right hand side of (2) is replaced by $Cc(\alpha, s)p^{\frac{1-\alpha}{2}}(\ln p)^{\frac{(\alpha+1)(s-1)}{2}}$.

If p and a(p) in Theorem 1 are changed by F_{n+1} and $(1, F_n)$ respectively for the case s=2, where $F_n=\frac{1}{\sqrt{s}}\Big(\Big(\frac{1+\sqrt{s}}{2}\Big)^n-\Big(\frac{1-\sqrt{s}}{2}\Big)^n\Big)$, $(n=1, 2, \cdots)$ denote the Fibonacci sequence, then the right hand side of (2) may be improved slightly by $Cc(\alpha)F_n^{\frac{-\alpha(2\alpha-1)}{4\alpha-1}}(\ln 3F_n)^{\frac{3\alpha-1}{4\alpha-1}}$.

The vectors \boldsymbol{a} is called a good lattice point modulo p by Hlawka, E. or an optimal coefficient modulo p by Koposob, H. M. and a table of good lattice points is contained in many books for the purpose of practical use, for example the book of Hua Loo Keng and Wang Yuan^[2]

§ 2. Several lemmas.

Lemma 1. For any given p, there exists a such that any non-zero solution l of the congruence

$$(\boldsymbol{a}, \boldsymbol{l}) \equiv 0 \pmod{p}$$

satisfies

$$||\boldsymbol{l}|| > c(s) p / (\ln p)^{s-1}$$
(4)

and

$$\sum_{(a,l)\equiv 0 \pmod{p}} \frac{1}{\|\boldsymbol{l}\|^{\alpha}} \leq c(\alpha, s) p^{-\alpha} (\ln p)^{\alpha(s-1)}, \tag{5}$$

where Σ' denotes a sum with an exception l=0, (Cf, Baxbalob, H. C. [3])

Lemma 2. Suppose that $\|\boldsymbol{l}\| \geqslant 3^{s}$ and that $1 \leqslant M \leqslant \|\boldsymbol{l}\|/3^{s}$. Then

$$\sum_{|\boldsymbol{m}| \leq M} \frac{1}{\|\boldsymbol{l} + \boldsymbol{m}\|^{\alpha}} < c(\alpha, s) M^{\alpha} \|\boldsymbol{l}\|^{-\alpha}$$

(Cf. Wang Yuan [4]).

^{*)} For example, Q(x) is a positive definite quadratic form.

In the following, the vector \boldsymbol{a} is taken such that (4) and (5) are satisfied.

Lemma 3. We have

$$\Gamma(\theta^{2\pi i(l,x)})^T = \sum_{\substack{|m| < N \\ (a,l-m) \equiv 0 \pmod p}} \theta^{2\pi i(m,x)}.$$

In particular,

$$\Gamma(e^{2\pi i(l,x)})^T = e^{2\pi i(l,x)}$$

for $||l|| \leq N$ and p > c(s).

Proof

$$\Gamma(\theta^{2\pi i(l,x)})^T = \sum_{|m| < N} \frac{1}{p} \sum_{k=1}^p \theta^{2\pi i(a,l)k/p} \theta^{-2\pi i(a,m)k'p} \theta^{2\pi i(m,x)} = \sum_{\substack{|m| < N \\ (a,l-m) \equiv 0 \pmod{p}}} \theta^{2\pi i(m,x)}$$

The Lemma is proved.

Lemma 4. Suppose that $\varphi(\mathbf{x}) = e^{2\pi i(\mathbf{m},\mathbf{x})}$, where $||\mathbf{m}|| \leq N$. Then R = 0. Proof Suppose that

$$u(t, \boldsymbol{x}) = u(t)e^{2\pi i(\boldsymbol{m}, \boldsymbol{x})}$$

and

$$v(t, x)^{T} = v(t) (e^{2\pi i(m,x)})^{T}$$

where u(0) = v(0) = 1. Substituting into (1) and (3), we have

$$\frac{\partial u}{\partial t} = u'(t)e^{2\pi i(m,x)} = Qu = u(t)Q(2\pi im)e^{2\pi i(m,x)}$$

and

$$v'(t)\left(\boldsymbol{\theta^{2\pi i(m,x)}}\right)^{T}\!=\!v(t)Q(2\pi i\boldsymbol{m})\left(\boldsymbol{\theta^{2\pi i(m,x)}}\right)^{T}$$

by Lemma 3. Hence

$$u'(t) = u(t)Q(2\pi i m)$$

and

$$v'(t) = v(t)Q(2\pi im)$$
.

Since u(t) and v(t) satisfy the same ordinary differential equation with the same initial value, therefore $u(t) \equiv v(t)$ and the Lemma follows.

Lemma 5. Let

$$\varphi_2(\boldsymbol{x}) = \sum_{|\boldsymbol{m}|>N} C(\boldsymbol{m}) e^{2\pi i(\boldsymbol{m},\boldsymbol{x})}$$

Then

$$\| \Gamma \varphi_2(x)^T \| \leqslant Cc(\alpha, s) p^{\frac{-\alpha(2\alpha-1)}{4\alpha-1}} (\ln p)^{\frac{4\alpha^4(s-1)}{4\alpha-1}}$$

Proof It follws from Lemma 3 that

$$\begin{split} & \| \varGamma \varphi_2(\boldsymbol{x})^T \|^2 = \int_{G_s} | \sum_{\substack{\boldsymbol{l} \mid \boldsymbol{l} > N \\ (\boldsymbol{a}, \boldsymbol{l} - \boldsymbol{m}) \equiv 0 (\bmod p)}} C(\boldsymbol{l}) \varGamma (e^{2\pi i (\boldsymbol{l}, \boldsymbol{x})})^T |^2 d\boldsymbol{x} \\ & = \int_{G_s} \left| \sum_{\substack{\boldsymbol{l} \mid \boldsymbol{l} > N \\ (\boldsymbol{a}, \boldsymbol{l} - \boldsymbol{m}) \equiv 0 (\bmod p)}} C(\boldsymbol{l}) e^{2\pi i (\boldsymbol{m}, \boldsymbol{x})} \right|^2 d\boldsymbol{x} = \sum_{\substack{\boldsymbol{l} \mid \boldsymbol{l} > N \\ (\boldsymbol{a}, \boldsymbol{l} - \boldsymbol{m}) \equiv 0 (\bmod p)}} C(\boldsymbol{l}) \Big)^2. \end{split}$$

Let l-m=n. Then

$$\begin{split} & \| \varGamma \varphi_{2}(\boldsymbol{x})^{T} \|^{2} \leqslant C^{2} \sum_{|\boldsymbol{m}| \leq N} \left(\sum_{(\boldsymbol{a}, \boldsymbol{n}) \equiv 0 \pmod{p}} \frac{1}{\|\boldsymbol{n} + \boldsymbol{m}\|^{\alpha}} \right)^{2} \\ &= C^{2} \sum_{|\boldsymbol{m}| \leq N} \sum_{(\boldsymbol{a}, \boldsymbol{n}) \equiv 0 \pmod{p}} \frac{\|\boldsymbol{n}\|}{\|\boldsymbol{m}\| \|\boldsymbol{n} + \boldsymbol{m}\|} \right)^{\alpha} \frac{\|\boldsymbol{m}\|^{\alpha}}{\|\boldsymbol{n}\|^{\alpha}} \sum_{(\boldsymbol{a}, \boldsymbol{l}) \equiv 0 \pmod{p}} \frac{1}{\|\boldsymbol{l} + \boldsymbol{m}\|^{\alpha}}. \end{split}$$

Since

$$\frac{\|\boldsymbol{n}\|}{\|\boldsymbol{m}\| \|\boldsymbol{n} + \boldsymbol{m}\|} \leqslant 2^{s}$$

and we may suppose that p>c(s), by Lemmas 1 and 2 we have

$$\begin{split} \| \varGamma \varphi_{2}(\boldsymbol{x})^{T} \|^{2} \leqslant & C^{2} c(\alpha, s) N^{2\alpha} p^{-2\alpha} (\ln p)^{2\alpha(s-1)} \\ \leqslant & C^{2} c(\alpha, s) p^{\frac{-2\alpha(2\alpha-1)}{4\alpha-1}} (\ln p)^{\frac{4\alpha(s-1)}{4\alpha-1}} \end{split}$$

The Lemma is proved.

Lemma 6. If $v(0, \mathbf{x})^T = (\Gamma \varphi_2(\mathbf{x})^T)^T$, then

$$\| \varGamma v(t, \boldsymbol{x})^T \| \leqslant C c(\alpha, s) p^{\frac{-\alpha(2\alpha-1)}{4\alpha-1}} (\ln p)^{\frac{2\alpha^2(s-1)}{\beta\alpha-1}}.$$

Proof For any given I, we shall prove that the congruence

$$(\boldsymbol{a}, \ \boldsymbol{l} - \boldsymbol{m}) \equiv 0 \pmod{p} \tag{6}$$

has at most 1 solution m satisfying

$$||\boldsymbol{m}|| \leq N$$
.

In fact, if there are two different vectors m and m' satisfying (6), then $m-m'\neq 0$,

$$(\boldsymbol{a}, \boldsymbol{m} - \boldsymbol{m}') \equiv 0 \pmod{p}$$

and

$$\|\boldsymbol{m} - \boldsymbol{m}'\| \leqslant 2^{s}N$$

which leads to a contradiction with Lemma 1. Hence by Lemma 3, we have

$$\Gamma(e^{2\pi i(l,x)})^T = 0 \text{ or } e^{2\pi i(m,x)},$$

where $\|\boldsymbol{m}\| \leq N$. Consequently, it follows from Lemma 4 that the solution $u(t, \boldsymbol{x})$ of the partial differential equation

$$\begin{cases} \frac{\partial u}{\partial t} = Q\left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x^3}\right) u, \\ u(0, \mathbf{x}) = \Gamma \varphi_3(\mathbf{x})^T \end{cases}$$

and $\Gamma v(t, x)^T$ are identical, where $v(t, x)^T$ is the solution of the ordinary differential equation

$$\begin{cases} \frac{dv(t, \boldsymbol{x})^T}{dt} = Q(D_{1,0,\cdots,0}^T, \cdots, D_{0,\cdots,0,1}^T)v(t, \boldsymbol{x})^T, \\ v(0, \boldsymbol{x})^T = (\Gamma \varphi_2(\boldsymbol{x})^T)^T. \end{cases}$$

Hence by Lemma 5, we have

$$\begin{aligned} \| \Gamma v(t, \ \boldsymbol{x})^T \| &= \| v(t, \ \boldsymbol{x}) \| \leqslant c(s) \| u(0, \ \boldsymbol{x}) \| \leqslant c(s) \| \Gamma \varphi_2(\boldsymbol{x})^T \| \\ &\leqslant Cc(\alpha, \ s) p^{\frac{-\alpha(2\alpha-1)}{4\alpha-1}} (\ln p)^{\frac{2\alpha^2(s-1)}{4\alpha-1}}. \end{aligned}$$

The Lemma is proved.

§ 3. The proof of Theorem 1.

Let

$$\varphi(\boldsymbol{x}) = \varphi_1(\boldsymbol{x}) + \varphi_2(\boldsymbol{x})$$
,

where

$$\varphi_1(\boldsymbol{x}) = \sum_{|\boldsymbol{m}| \leq N} C(\boldsymbol{m}) e^{2\pi i(\boldsymbol{m}, \boldsymbol{x})}$$

NO. 4

and

$$\varphi_2(\boldsymbol{x}) = \sum_{|\boldsymbol{m}| > N} C(\boldsymbol{m}) e^{2\pi i(\boldsymbol{m}, \boldsymbol{x})}.$$

Let $u_1(t, \boldsymbol{x})$ and $u_2(t, \boldsymbol{x})$ denote the solutions of the equation (1) with the initial conditions $u_1(0, \boldsymbol{x}) = \varphi_1(\boldsymbol{x})$ and $u_2(0, \boldsymbol{x}) = \varphi_2(\boldsymbol{x})$ respectively. Further let $v_1(t, \boldsymbol{x})^T$ and $v_2(t, \boldsymbol{x})^T$ be the solutions of the equation (3) with the initial conditions $v_1(0, \boldsymbol{x})^T = D_{0,\dots,0}^T \varphi_1(\boldsymbol{x})^T$ and $v_2(0, \boldsymbol{x})^T = D_{0,\dots,0}^T \varphi_2(\boldsymbol{x})^T$ respectively. Then

$$u(t, \mathbf{x}) = u_1(t, \mathbf{x}) + u_2(t, \mathbf{x})$$

and

$$v_1(t, \mathbf{x})^T = v_1(t, \mathbf{x})^T + v_2(t, \mathbf{x})^T$$

It follows that

$$||u_1(t, \boldsymbol{x}) - \Gamma v_1(t, \boldsymbol{x})^T|| = 0$$

by Lemma 4 and that

$$\| \Gamma v_2(t, \boldsymbol{x})^T \| \leqslant Cc(\alpha, s) p^{\frac{-\alpha(2\alpha-1)}{4\alpha-1}} (\ln p)^{\frac{2\alpha^s(s-1)}{4\alpha-1}}$$

by Lemma 5. Since

$$\begin{aligned} \|u_2(t, \boldsymbol{x})\| \leqslant \|u_2(0, \boldsymbol{x})\| &= \left(\int_{G_s} |\varphi_2(\boldsymbol{x})|^2 d\boldsymbol{x}\right)^{1/2} \leqslant C \left(\sum_{|\boldsymbol{m}| > N} \frac{1}{\|\boldsymbol{m}\|^{2\alpha}}\right)^{1/2} \\ &\leqslant Cc(\alpha, s)N^{-\frac{2\alpha - 1}{2}} (\ln p)^{\frac{s - 1}{2}} \leqslant Cc(\alpha, s)p^{-\frac{\alpha(2\alpha - 1)}{4\alpha - 1}} (\ln p)^{\frac{2\alpha^3(s - 1)}{4\alpha - 1}}.\end{aligned}$$

we have

$$\begin{aligned} \|u(t, \, \boldsymbol{x}) - \Gamma v(t, \, \boldsymbol{x}\|^T\|^2 &= \|u_1(t, \, \boldsymbol{x}) + u_2(t, \, \boldsymbol{x}) - \Gamma v_1(t, \, \boldsymbol{x})^T - \Gamma v_2(t, \, \boldsymbol{x})^T\|^2 \\ &\leq 3(\|u_1(t, \, \boldsymbol{x}) - \Gamma v_1(t, \, \boldsymbol{x})^T\| + \|u_2(t, \, \boldsymbol{x})\|^2 + \|\Gamma v_2(t, \, \boldsymbol{x})^T\|^2) \\ &\leq C^2 c(\alpha, \, s) p^{\frac{-2\alpha(2\alpha-1)}{4\alpha-1}} (\ln p)^{\frac{4\alpha^4(s-1)}{4\alpha-1}}. \end{aligned}$$

The Theorem Ts proved.

References

- [1] Рябенький, В. С., Об одном способе получения разностных схем и об использовании теоретико-числовых сеток для Решенмя Задачи Коши Мегодом Конечных Разностей, *Тру. Мат. ИНСТ. АН СССР*, Том LX, (1961), 232—237.
- [2] Hua Loo Keng and Wang Yuan, Applications of number theory to numerical analysis, Sci. Press (Beijing), 1978.
- [3] Бахвалов, Н. С., Приближенном Вычислении Кратных Ингегралов, Вес. МГУ, 4 (1959), 3—18.
- [4] Wang Yuan, A note on interpolation of a certain class of functions, Sci. Sin., 10 (1960), 632-636

关于用数论网格求柯西问题渐近解的一个注记

王 元 (中国科学院数学研究所)

摘 要

Рябенький, В. С. 曾提出用数论网格构造的常微分方程组的解来构造偏微分方程

$$\begin{cases}
\frac{\partial u}{\partial t} = Q\left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_s}\right)u, \ 0 \leqslant t \leqslant T, \ -\infty < x_{\nu} < \infty (1 \leqslant \nu \leqslant s), \\
u(0, \mathbf{x}) = \varphi(\mathbf{x})
\end{cases}$$

的近似解 $u^*(t, x)$ 的方法,此处 Q(x) 为多项式。 当 Q(x) 与 $\varphi(x)$ 适合某些条件时,他并给出了用 $u^*(t, x)$ 逼近 u(t, x) 的误差估计。

本文改进 $P_{\text{Я}}$ P_{I} $P_{$