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ABSTRACT

A general theorem on common filling regions of meromorphic functions and their derivatives is
proved by a direct and simple method. Some important results whose original proofs are very long
and complicated ean be dedueed immediately from this theorem.

For every meromorphie funetion of positive and finite order in the plane
G. Valiron™ proves that there exists at least a Borel direction. At the same time, he
has posed an interesting and diffieult problem: whether a meromorphic funetion and
ijts derivatives have a common Borel direction or mnot. Concerning this problem,
H. Milloux!? has obtained the following theorem:

If f(z) 1s an enfire function of order 2 (0 << 1 << 0), then every Borel direction
of the deriwative f'(2) is also a Borel direction of f(z2).

The Milloux’s proof is very long and complicated. (His paper is over eighty pages.)
Recently K. H. Chang® has given a simpler proof for the Milloux theorem and extended
it to the case of meromorphic functions having a Borel exeeptional value oco. However,
the arrangement for original values in Chang’s proof remains complicated.

In this paper we shall prove a general theorem, from which the Milloux’s theorem
and Chang’s theorems ean be obtained immediately. The proof of this general theorem
is direct and simple.

I. Lemma

Let f(2) be a meromorphic function in [z2]| <R (0<R <o) If [z]<r
(0<r<<R) and d s the distance of z from the mearest of the zeros and poles of
f(2), then

()| R+r FAYI 1
tog] L < BAL (1, L) 4 78, 0) o nCB, 001 (1og ] o+ log2R)
el ey

where #(R, 00) denotes the number of reduced poles of f(2) tn |z} < R. (i.e. every
multiple pole is counted only once.)

The Lemma can be proved by applying the Poisson-Jensen formula to ;(—<Z))- (See
2
[4, 446—447].)
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II. TreEoREM

Suppose that f(2) is @ meromorphic fumction of order A (0 << A << o) in the plane
and that f(z) adopts the infinity as a Borel exceptional value in |arg z| << v,

I.: |z—R,| <&.R,, Rosu>2R,, lime, =0 2

T} ~»®

be a sequence of filling disks® of order A of f'(2). (That is to say, f'(z) takes every
complex number at least R:-E“ times in I',, except some numbers enclosed in two spherical

circles with radi 8, on the Riemann sphere, where lim g, = lim 6, = 0.) If we denote

8, = <sup log T(r, ) I(r, f)> — i (3)
1 logr
r>R,
and
6. > max (21 26, __1_) (4
A A (log B,)®
then the regions
1-9,
@,: (_R?. < l2] <2RE™)N(Jarg 2] < 20em,), (5

Np = 4me (6)

H

X -

must contain a subsequence (Gs,) as filling regions of order A, i.e. f(z) takes every
complex number at least R::"k times tn Gsy, ewcept some numbers enclosed in two

spherical circles with radit 8%, on the Riemann sphere, where lim &, = lim &, = 0.
D x D e k

k> k—>o

Proof. 1If the conclusion of the Theorem is not true, then any subsequence of fill-
ing regions can not be found from (,). We shall start from this fact and derive a

contradietion.

Most of the inequalities in the present paper are only valid for sufficiently large
values of the indice n. Hereinafter we shall not indicate this point.

Sinee (T,) is a sequence of filling disks of f'(z), there exists a number a, such
that?

0<la,| <1 and n(T,, f' =a,) >R, " )

In the interval [RL 7»,R."7=], we take the points

27, log B, ] + 1>,

Fm = BEC 4 907, (= 0,1,2, -+, 35 0 = |
-+ 7 log (1 + 7.)

1) We use filling disks instead of the French term cercles de remplissage.
2) n(D, g = a) denotes the number of reros of g(z) — @ in D, ecounting with their multiplicities.
When D is |z — 20| <r, the notation n(r, z0, g = @) is also used.
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where [m] denotes the integral part of —QM—.
log (1 + 7,) log (1 + 7,)
Put
Com: 12— Tom| < 20,700,
Crm: |2 = rom| <40m,r5...,
and

G, (R < |z| < Ry N(Jarg 2| < 1,). (8)

It is easy to see that

C) C;,,,,)c G.. (9

M
G, C (U C,,,,,,> c (
m=0 m=0
Since (G,) does not contain any subsequence as filling regions of order A of f(z), -
we can choose a subsequence (G'»,) having the following properties:

For every positive integer k, there are three distinet complex numbers Oisny,

3
(4=1,2,3) such that |ain, aim|>8 (1<ixj<3) and D) n(Ga, f = 1)<

i=1

R:;, where 8 and p, (p. << 1) are two positive numbers independent of k.

In fact, we take two sequences of positive numbers &), 8, such that lim g} =

k>0

limé; = 0. If the preceding assertion is not true, then a subsequence (@,,) of (G,)

k—>wo

can be found such that all the complex numbers satisfying the inequality n(G,,,, f =

r

a) < R::“ can be enclosed in two spherical circles with radii 67 on the Riemann
sphere. Similarly, there is a subsequence (G,.) of (&,,.) such that all the complex

numbers satisfying the inequality n(@,.,, f=a) < R,l,,_;’ can be enclosed in two
spherical circles with radii §;. By continuing this procedure and taking the diagonal

).—z”

sequence (G4,:), the complex numbers satisfying the inequality n(Gix, f = &) < Bi.*
can be enclosed in two spherical circles with radii &, where lim &y = lim &, =0.

koo koo
This means (Gi,x) i3 a sequence of filling regions of order 1 and we derive a contra-
dietion,

In what follows we shall use (G,) instead of (Ga.) for the sake of brevity. It is
obvious that we can take a3, =0 (n=1,2,---). Hence, for every n, there are
three distinet complex numbers ¢;,, (¢ =1, 2, 3) such that

G3,4 = Oo,xnax {]ahnlilaLnly ___—-;L—___“} S; Ei,
[o, n — 2,4 8

and
3

DG, f = ai.) < RE,

i=1

where 6 and p, (p, << 1) are two positive numbers independent of n.
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By putting
h.(2) = f(2) — a,z
and
G"m(t) = hﬂ(r;lm + 407]nr;,mt)7
G,.,(t) is meromorphic in |t] << 1 and

3

D allt] <i,Gan(®) = Piun(®)) < B,

i=1

where P;,,,.,(t) = a;,, — @70, — 40a,n,00..t (1 =1,2,8). The funetions P;,,,.(t)
have no gzeros and poles in |¢| <1, and

S log* (i 1Pram(®] + D] [P0 (D) i P,.mm(t)]>dat

121 i=1 1€
= O(logR,). (10)
According to the Rauch Theorem!®! the inequality = ({tl < ‘)-10, Gy = a) < AR

holds for all the complex numbers «, except some o enclosed in one spherical ecirecle
with radius e %', Thus, 7(C,,m, h, = ) << ARt holds for all the ¢, outside a

spherical circle with radius e %a'.

Since M << 4logR, + 1, there is a finite complex number b,, outside the M

exceptional circles with spherieal radii e~*a' sueh that

bl <1, 17C0) —b,] > 1,
(@, h, = b,) < R, (o< ). (11)
Let
k, = 202 (12)
7w
and
_L 1
2y — Rkn
=) = (13)
zkn 4+ Rkn

Then the function [ = £,(2) maps |argz| <7, to [{] < 1. Its inverse is

¢ = 2,(0) = R(%)k 14

and we denote A,(z,($)) by H,(Z).

When a point { is in |J] <1 — =, its original image z will satisty
R2
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By < 2| < B (15)

by (14) and (12). Since f(z) adopts co as a Borel exceptional value in |argz| << v,
(15), (8) and (11) imply

n(lel<1— 2, B =) +a(ltl <1--3, B —5.)

x?

RZ RZ
< (G, by = ) + (G, ke = b)) < R, (0" <2). (16)

Further, if £ is the image of an arbitrary point z = re”® € I',, then

Bl

1 1

4¢kn REscos 7~
n k,

lgl =11 2 2 1 1
rks 4 REf; + 2rFa Rf:'cosi_—

1

L g%
4(1 — e,)*ncos T
< {1 — 2 an

[(1+ &,)F + 1]

(12) and (6) give

+
Eq Eqp
o8 o

Hence

b3

- &
] 9 n
— < — 0
k. k,

1
Since (1 — g,)»—> ¢, we have

(1 — e ) = {(1 —&,)}fn—1,

and
1

(1 - Sn)r‘"

— 1.

1
1<+ ek <

Therefore (17) means that the image of I', under the mapping { = {,(z) is contained
1

i < =.
in |¢] <2

L

Put
T, = 8g,. (18)

From (18), (12), (6) and (4), we deduce that

e

Tn 1 3
e (19

n
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Consequent]y, the image of I', is contained in [{| <1 — if and we have

Rks
n(1=L = 0) = nr, 1 = 0 > B 20)
by (7).
In |5]<1— —2—;, we make some disks, having their centers at every pole and
Ri
b,~point of H,({) and d, = R%“ for their radii. The union of these disks is denoted
by (). Then we select r,,, and #,, such that
roa=1—-2 (21)
=
4 3
1—_:<r2-n<1— =7 (JC’ =r2.n)n(7’){m=¢- (22)
RZ R?

For any point £ in the region (|{| < #,.) — (7);.,, We apply the Lemma and
obtain

Iog, Hn(;‘) < "Z.n + rl.n m <r2"” H’l >
H,,(;) - bn 2.0 — i Hn - bn
+ {f(ry., He = ©) + n(r;,, H, = b,)}
— 2
X <log2 + 10g—1—> — (rz'—"—"'—")—n(rl,,., H, = 0). 23
d, 4¢3
q, .
For the term m <r2,,,, ———), we write
H,—0b,
H, > 1 ‘z“ +{ ho(2a(ra.e®)) i), ' }
m {1y, = log ! 2,(r;.6%) |d
< ! Hﬂ - bfl 277 <0 h”(zﬂ(,-z,"g“?’)) - bnl I ( ! )] (P
1 (™ oot | __PaC2a(rane’®)) 1 r" + ;
< — | log Ban s B dp + — | log" |z,(r,.e®)|dep. 24
o, L ha(2a(r2 e ™)) — byl T 2 lo [2raae™] g, (24)
From (14), it is clear that
kan(l —r .n)k"—l ’ i Qk"kan
5 2 < Iz,,(rz_,,e q’)] < m (25)
Thus
1 jz“ + ’ i + Qk"kﬂRﬂ +
T log™ | z,(r2,,6'%) |dp < logm ———=2—2 — < 3log™R,. 26
5 ), 1087 za(rane™) lde <o Ty e 0 (26)
hn(zn(rl.nenp)) qu)’ we reea]l

2z
In order to estimate the integral —1-5 log*
0

hn(’m("z. ’ei‘P)) - bﬂ

the following factis->-31; i
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Suppose that g(z) is meromorphic in |z| < B (<< ) and that g(0) 2 0, oo,
Then we have

%]g 5+ 3log*s + 3logt —1— + log* X
g

log
p—1r r

+ log* —1- + log*T(p, g) + log*log* —L

5(0) PO @D

for t=1re? and 0 <r <p <R, where N=1nlp,g) +n (p, —3—-) and 5(#) is the
distance of ¢ from the nearest of all the zeros and the poles of g(2) in |z| < p.

When ¢(0) = o0, set g(z) = where 1 and ¢, are chosen such that

g.(0) =1, From

r

c1g:(2)
i

g(z) g€2) =z
we have
(1) g:(H) iy
logt g@) < log™ | H>=) 4 log™ = 4 log2.
g(t) () r
Thus
log* AN Q) i< 8 4 2logl + 4logtp + log* 1 + 3log™
g(t) r o — ¥
+ ) + 1 + + + 1 ’
+ log" = + log¥ -~ + log™ T'(p, g) + log" log . 270
r o(®) leal
Choose
i f)k,;HR
2) = 1 (2) — ba, t=2,(rs,,6%), p=—"——"2—, 28
9(2) = ha(2) A ra (28)
From (22) and
B, (1 — ra.)" ; 2% R
—r =t == Zn(r o el(P) é —_—r
2kﬁ l 2 ] (1 _ ’.2"),‘" 1
we have
oks B .
Ry < |t| =r <p<2Bs, p—r=> ———2o- =R ", (29)
(1 - ,.Z.u)k’
ak,Mp PATRED ]
m=n(_~____ﬂ__, h,,)+n(——",h,.=b,,> < Bi*, (30)
(1 - 7.Z.ﬁ>kn (1 - "Z,U)k"
T(o, 0) T( 2R, g b ) < Rit (31)
y ¢ == T Nk ? ~— 0zZ2 ~— 04 n
9 (O = ro)¥e
D
19C0)] = 17(0) = b, > = (32)

1) When f(0) = co, we note that yr? () = lzx_r.r: g(2)s* = ¢1 is & finite and nonzero number.
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Now let us estimate the quantity §(¢). If [ = re’® (—;— <r< 1) is a point in

the I plane, then we have for its original image 2

argz = k, argl all k, aresin 2rsing -
1—-¢ {(A — )+ 4rtsin® p}?
T 2r 1
Sb S Tae T G
14 ~=—12

2y

cnfi-A=o

In particular, for a point £ on |{] = #,,,, its original image z must satisfy

). (33)

If z; is a pole or b,~point of h,(z) in the region {(|z| < p)\(Jargz| <=n.)},
then
It — 2;] > R "ssin 22> L (34)
R% E;
by (29) and (33).
For an arbitrary point { in |{| << 1, by analogy to the inequality (25), we
obtain from (12), (6) and (4)

2, ()] > BaBald — [ED)%7 o R,

oks 2
—deip, > 28 >4 (35)
(log B,)*

Suppose that z; is a pole or b,~point of h,(2z) in |argz| <<z, and that its

image {,(z}) is in [Z| <1—-2-. By (28), r,,¢'® is the image of £, so that
B?

],.z.”el'rp - cn(x;)l =

g‘_ §;(Z)dZI

< (max 122¢2)1) 18 — 2] < (max F}—D—I) It — 1]

:ez.r;
=gl g,

min | z,(Z)|
it
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1979
Since (|4} = r..)N(¥)n = @ by (22), we obtain
1t — ] >d, = —
j1 = Un R£+3' (36)
Suppose further that zj is a pole or b,~point of h,(z) in [argz| <7, and that
its image £,(z}) is out of |{] <1 — —2; We have as above
R'f
Irane’® — 0,(27) | < (max|L(2) )]t —2f
z€t:;’
< _ﬁ_‘_‘_""[_ < |t —2)],
< i@l ST
1eiet
so that
It — 2] >-L. (37)
Ri

The inequalities (34), (36) and (37) give
L} = 0Cogr).  (8)

1 { 1 1
og—— = max 1 log , log —, log
5(t) [t — ;) |t — ;] |t —
By substituting the estimations (29), (30), (31), (32) and (38) in (27)°, we
obtain
ho2,(raqe®))
log* nZen = 0(logR,). 39
ho20(r20 %)) — D, ¢ ) (39
Thus
m ("z,m ’—'E:'——> = O(IOan> (40)
H,—b,
by (24), (26) and (39).
From (16), (21), (22), (40) and
— 2 2 r 2Ty
(an = "1a) (e, B, = 0) > (L> W(rie, Hy=0)>RETE,  (41)
417, R
we have by (23) :
H.(D 1 Ja—s’—1n
1 ‘ = —— R #s 42
Bl —b. 2 (42)
where the point £ is in || << 7y, but out of (7).
(43)

Return to the z plane and take
Tn s
D.: (BT < |z| <RI T)N(largz| <7,)

1) When £(0) = oo, we use (27) instead of (27).
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For z = re® ¢ D, its image { has to satisfy

Lot 03)1 t, 11
4rka Rkncos ™~ (R:_Tn)k_,, E¥-

g <1 —=-—7 él'——‘——rﬂ-—l—z<ﬁ.n-
(rfs + REs)? {2(R} )%}

Denoting by (7).., the original image of (y);,., we obtain for z € (D,\(7)...)

Amg =1
log] ha(2) H (D 1 R\,
ghn<z>—b(=l°g)_ﬂ,<‘;> —%, | T ST < 5 (4d)
1
here log———— << 0 by (85).
where g ory <0 0 %)

On the other hand, for an arbitrary point 2, € {(D,N(]z] < 2R:_T"))\(7’)z,ﬂ},
the Poisson-Jensen formula gives

S8R 4 2R'Y

log |n(20,) — ba] < m(3R"F, h, — b,)

1-In 1=z
3R” 4 -—2R” 4

(SR:——"LI)z - (_J“Zo,,,

+ D log|——"- , (45)
. SRL—T(ZDm - C#) '
where the c,’s denote the poles of h,(2) in |z| < 3R'Y.
If ¢, is out of |argz| < 7,, then we have
1=Tn N Rl_};—"
|20 — €,] = R % sin (5, — 7.) = i
T
s e 4R"T
= 48: R ™7 = n (46)

T (g R)E
by (43), (18), (6) and (4).

It o, 3 in Jarg 2] <, its image €, must be in |Z] < 1y since || < 3RV,

Denote by o, the image of 2z,,. It is clear that {,, is out of (y);,,. Thus

dﬂ< I§0m —gﬂl =

[ L) dz| < (max 161 )20 = e

20,7 z€zg,nc,
< 1 o, — — 'ZU-ﬂ _ cul —
<f??é FAG) 1> 200 = cul min|2, (D] < lzon —oul. “n

By substituting (46) and (47) in (45),we have



1979 COMMON BOREL DIRECTIONS 101

Tn

s s 6 t—_"
log |Ra(20,0) — bs| < 5m(3E;"%, hy —b,) + n(3R, ¥, h, = 00)log IZ,. :
R
log d ot
<|5+ e\ T(4RY, b, — b,).
log—
g 3

From h,(z) = f(2) — a,z, (7), (11), (18), (3) and (4), We obtain
1og | hy(20.a) — bs| < (A + 5)(log R,)T(4RL %5, )
< 41 (L + 5) (log B,) R~ #ent6a=284bn |
< R,l,—le". (48)
- Every contour of (7),,, can be covered by a corresponding disk with radius d.
The union of these disks will be denoted by (v);.,. It is easy to see that

2%k, R, . 1 < 1
( 9 )k,,ﬂ R},'H\ Ritl .
RZ '

d, < ( mex lz:.@)l)d, <
|c|<x—.l_.
&

In view of (16), the total sum of the radii of (y);,, does not exceed

o= 2, go=e)+n(lti<1-2, B =b)la <1 9
R? E? R+

For an arbitrary point z in D,\(7)%.., We may join it to the point z,, with a
segment. If the intersection parts of this segment with (y)),, are replaced by the
corresponding ares, then we obtain a curve L,. By (43) and (49), the length of L,

does not exceed ZR:’T". Thus

| ha(2) — b, S o (u) —1lgi—e =222 In
1 7 — ____—du < g 2'n ko 2 + 1R <1.
1% hz0n) — bal 1) ho(u)—0, (2= + DRI (50)
Consequently
log | h,(2) — b,] < log |k,(20,,) — b, +1 < R} 4 1. (51)

Combining this inequality with (44), we obtain

1 25

log |h,(2)| << Ri~%%a + 1 — = Ri—::‘—kn (52)

]

for z € (D\(7)%n)-

Now we choose a point 2, in D, such that |2, — R,| <1 and 2,€ (y).,,.
Obviously, D, contains the disk |z — z,| <4e,R,. In the annulus 3¢,R, < |z —2z,]|
< 4¢,R,, we choose a circumference |z — z,| = r,, not intersecting (7).,,. In view
of (49), the above two choices are possible.
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According to (52) and (7), we have

log™ | f'(2)| <logt|h,(2)]| + logt|a,] + log2 << Ri~*es (53)
for every point z on |2 — z,] = r,. It follows that
m(r,, 2,, ) < Ry (54)

In the angular domain |argz| << y,, f(2) adopts o as a Borel exceptional value,

n(ry, 2,, ) <RBRi, (o, <2

If ¢, is an arbitrary pole of f'(z) in |z — z,| <r,, then we have |¢, — z,| = d,,
similar to the inequality (47). Thus

Neray o0, < |7 22 D gy < B2, (o). (55)
o
Therefore
T(r,, 2., ) < 2Ri-*s, (56)

On the other hand, we have for any complex number «

T f =0 <n (L ek, 20, = 6) <N, 20, f = @)
9 log2

et

<1 {T(r,., 2., f) + log*|c| + log + IogQ}

1
"~ log?2 [f'(2,) — a
1

— L+ log?
1 (z.), ol o8 }’

<_i_ {T(T,., 24, f’) + 10g+
log2

where |f'(z,), &| denotes the spherical distance between f'(z,) and «. Substituting
(56) in this inequality, we obtain

n(Ta, f' = @) < —3— Ri-ten, (57)
log?2

R

B W

except some o enclosed in a spherieal cirele with radius e But according to the
supposition of the Theorem, (T’,) is a sequence of filling disks of order A of f'(z), so
that

(T, f = a) > R:“‘; (58)

for all the ecomplex numbers o, except some ¢ in two spherieal ecircles with radii &,.

’
[
n

Comparing (57) with (58), we derive R:E”—c" < ] 3 5" But (4) implies R:E”_
en XlogR )% 0g =
e2'F5% L, oo, This contradiction completes the proof of the Theorem.

>RT >
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I1I. CororLARIES

From the above general theorem, we can obtain four corollaries Immediately.
Among them, Corollaries 2 and 3 are Chang’s results®, which extend Milloux’s
theorems!,

Corollary 1. Let f(z) be a meromorphic function of order 2 (0 <A << ) in
the plane. Suppose that B: arg z = 6, (0 << 6, <<2x) 1s a Borel direction of order 2
of f'(2) and that f(z) adopts co as a DBorel exceptional value tn |argz — 6,] < 7,
(70> 0). Then there exists a sequence of positive numbers Rny, tending to oo and a
sequence of posttive numbers T, tending to O such that

1-1,

(3"5 < Izl <2B, )N (Jargz — 6] <7a,)

is a sequence of filling regions both for f(z) and f'(2).

Without loss of generality we can suppose that 8, = 0. Sinee B: argz =0 i3 a
Borel direction of order 4 of f'(z), according to the Rauch Theorem!"'*-*! there exists
a sequence of filling disks of order &, I'F: |z — 2,| < eX|za|, |2ap] = 2|2,], lim ¥

7>

= 0, lim arg z, = 0 such that f'(z) takes every complex number o at least ]z,,l""‘;

>0

times in I'¥, except some numbers enclosed in two spherical circles with radii 5, on
the Riemann sphere, where lim ¢, = lim &, = 0.

Choose
2¢ 92
€, = max {e:‘ + argz,, “8", “‘8", —1—1} , (59)
A A (log R)®

where R, = |z,| and B, are given by (3). It is obvious that every I',: |z — R,|<<
&,.R, contains the eorresponding disk I'Y¥. Thus (I',) is a sequence of filling disks of
order 1 of f'(2) and satisfies the conditions of the above theorem. On putting 7, =

: t-n,
4ze?, then (R" < |z < 2Rf,+"n> N(largz| <73,) (n=1,2,-++) must contain a

subsequence of filling regions both for f(z) and f'(2).

Corollary 2. With the supposition of the Corollary 1, B is a Borel direction of
order 4 of f(2).

=1,

RS
In fact, from the Corollary 1, Ga: < "; < |z| < 2R::""k> N (larg z — 6,] < -

&

n"k) is a sequence of filling regions of order A of f(2), i.e. f(2) takes all the complex

1 . .
numbers « at least Rf,;‘"k times, except some numbers enclosed in two spherical circles

with radii 6%, on the Riemaun sphere, where lim &, = lim 6%, = 0. We can suppose

k= k—>o

without loss of generality that Z 8y, is less than a predeterminate positive number 7o.
k=1

Consequently, the inequality n(Ga,, f = a) > Rf‘,;‘;‘lk holds for all the positive

integers k& and all the complex numbers «, except some ¢ enclosed in & sequence of
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circles, and the total sum of their radii is less than 7;. For the “normal” numbers «
and any positive number &, we have

log n(2R. ”"k , 60,8, f = )

2>Tm logn(r, 6y, &, f = &) > Tm
r+o logr k-»w 108‘ (le ”"k)
"k

log R"""
>1
k-w(l + T, )Iog (2 Rﬂk)

Therefore

lim {hm logn(r, 6o, &, f = “)} = 2 (60)
€0 ro+a- logr

for all the “normal” pumbers . But a classical result of Valiron!P% says that if
the set of complex numbers o« satisfying the equality (60) has a positive measure, then
arg z = 6, must be a Borel direction of order i of f(z). This gives the conclusion of
Corollary 2.

Corollary 3. Suppose that f(2) is a meromorphic fumction of order 2 (0 <A <
) tn the plane and that F(z) adopts oo as a Borel exceptional value. There exists at
least a common Borel direction for f(z) and all its derivatives.

1

Corollary 4. Suppose that f(2) ts a meromorphic function of order A (—2— <A< OO>

tn the plane and that f(z) adopts co as ¢ Borel exceptional value. If f(z) has exactly
two Borel directions B, and B,, then every fVP(z2) (1=1,2, --+) takes exactly B, and
B, as 1ts Borel directions too.
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