Normal Families and Fix-points
of Meromorphic Functions

LO YANG

1. Introduction

Let f(z) be a meromorphic function in a region D and z, a point of D. If
f(zo) = zy, then z, is a fix-point of f(z). There are many papers on fix-points of
entire and meromorphic functions (cf. [1]-[5]). It seems to me, however, that the
connection between the normality of a given family of holomorphic or mero-
morphic functions and the lack of fix-points of both these functions and their
derivatives has not been studied.

The principal aim of this paper is to prove the following theorem.

Theorem 1. Let & be a family of meromorphic functions in a region D and
k be a positive integer. If, for every function f(z) of ¥, both f(z) and f®(z) (the
derivative of order k) have no fix-points in D, then & is normal there.

For the proof of Theorem 1, Sections 2 and 3 are devoted to the case of k = 1,
which is the most important. Then, in Section 4, we give a brief formulation of
the case k = 2.

2. Preliminary Lemmas

Lemma 1. Suppose that f(z) is meromorphic in |zl < R (0 < R = ). If
f(0) # 0, o; f'(0) # d and df"(0) — f'(0) # 0, then

_ 1 !
2. - P
@1 TC.f)<Nef)+ N(r, f> + N(r, Oy d))

1
- N(” @+ d)f - f’) * 5
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for 0 < r <R, where

22  Sf) = 2,,,(,, f_'> N m<r’ ﬂ) N m<r, (' -z + d)},>
f f f'=@+d)

1
+m(r,z+d) + 2m<r, )
z+d

+ 3log 2 + log W‘

af"© — £
Proof. We start with the identity

- 1 f e+d)f = f f-@+d)

FoGtdf  Grdf Grdf - [

which leads to

7)

5,,,(,, f ) + m(,, (_Z_ﬂ)L‘_f_> + m(,, LM) T log2.
C+af Craf Crdf - f

Applying the Jensen-Nevanlinna formula to
( 1) ( f’—(z+d)>
m{r,—| and m\r,—————|,
f +d)f" = f'
(:5)-ren-nl-g) s ez
mr,—=|=T,f)— r, = o
f )7 %o
and
( f”—u+d))_ ( @+dU”—f> { ( &+dﬁw—f>
m\r, —— | =m|\r,————— | +{Nl|lr, ——
+d)f" = f f'=@+d) ff=—@E+d)

_NQri:iﬂjL”+b4;ﬂ9;i+,
Crdrf - f df"©) — £'(0)

we have

Since

NQQ+@ﬂ—f>‘NG’f_@+w>
fl-G+ad) @+df - f

=N@Gc+d)f" = f)= NG@.f—(+d)

O S T O A
fl—@+d) +d)f" = f'
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< N(r,.f) + N(r, ———1——) - N(r, ———1———>
fr=@+ad) +d)f"— f

( &+@ﬂ—f>_ ( @+@UW—D—U”—&+M§
m\yrv,—————————— | = m\r,
f'=(@+d) fl=(@+d)

and

"

Sm(r,z+d)+m<r,———————
fl—G+d)

> + log 2,
the conclusion of Lemma 1 follows.
Lemma 2. Let f(z) be as given in Lemma 1 and

c+adf" - ¥

@9 T —

If g(0) # 0, »; g'(0) # 0, d # 0, then we have

_ _ 1 _ 1
(2.5) Ny(r,f) = No(r.f) + N(n m) + N(h W)
g g(0) L
+ m(r, g> + log 2 0) + 2 log |d|

where N,(r, f') denotes the counting function of simple poles of f(z) and N(r, f)

denotes the counting function of multiple poles of f(z), each of them counted only
once.

Proof. Suppose f(z) has a simple pole at z, and z, # —d. Thus

f@= + 0(1), (a#0)
Z_ZO
f1@) = ——+ o)
(z — zp)
and
"(z) = 2 + 0
o=y Tow

in {(z,), a small neighborhood of z,.
Since

z+d=(z+d)+ (z- z),
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an elementary calculation gives

4a*(zo + d)? N 12a%(z + d) N ( 1 )
o(2) = (z = z0)° (z = zo)° (z = z9)* _ 4 {1+ 0z — )}
a(zy+d)’ N 3a’(zo + d)? N ( 1 ) a(zo + d)
(z — 20)° (z — z)’ (
in Q(z,). This means z, is neither a zero nor a pole of g(z), but z, must be a zero
of g'(z). Thus

z = zp)*

1
(2'6) Nl)(r9f) = N0<r, _7> + 10g+ L,
g ld|

where Ny(r,1/g') denotes the counting function of zeros of g'(z) which are not
zeros of g(z).

On the other hand, Jensen’s formula gives

oo 2) ol 2)f£2] () o(.
g g g(0) g g

=N(r,g) — N@r,g')+ N(r, —17> - N(r, 1)
8

g
_ 1 _ 1
= -NG.g)+ No|r.— ) = N{r.~ ).
8 8
It follows that

2.7 N0<r, —1,-) = N(r,g) + 1\7<r, l) + m(r, 8;_) + log|——|.
8 8 g 8'(0)

From the expression of g(z), it is clear that any zero or pole of g(z) can only
occur at zeros of f'(z) — (z + d), z = —d, multiple poles of f(z) and zeros of
(z +d)f" — f'. Therefore

8(0)

_ - 1 -
2.8) N(r,g + N(r, ;) = Nu(r, f)

+ N(r, ——1——> + N(r, S — ) + log+L :
fr—@+d) E+d)f' = f' |

Comparing (2.6), (2.7) and (2.8), the inequality (2.5) follows.

Lemma 3. Suppose that f(z) is meromorphic in |zl < R (0 < R = ). If
f(0) # 0, f'(0) # d; df"(0) — f'(0) # 0,d # 0, and

2£"0)d*(f'(0) — d) + 3f'(0)° — 3d*f"(0)* + 6d*f"(0) — 6df'(0) # O,
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then we have

2.9 T(r,f)< 3N(r, %) + 4N <r, > + S, f)

fr-G+d)

for 0 < r <R, where

2.10)  Si(r.f) = 6’"(’, f—> + 3m<r, f—) + 4m(r, ifl-—(z—+d)}>
f f fl=(@+d)

m(r,{(z-'-d)f"_f}')+3m(r,z+d)+7m(r, ! >
z+d)r"—f' z+d

,
d|

+101log 2 + 3 log 3 + 3 log|£(0)| + 4 log|f'(0) — d

+ log |d| + 2 log”

1
+ 2 log ——Mm@M@MmMm8 ™
8 laf"©) - 70)|

1
+ IOg " 2 ’ ’ 2 20n 2 2em ' ‘
2 £"(0)d*(f'(0) — d) + 3£'(0)" — 3d*f"(0)* + 6d°f"(0) — 6df"'(0)]

Proof. Comparing the fact that
No(r,f) + N, f) = N, f) =T(r.f)

and Lemma 1, we obtain

f'—(z+d)>

1
R A

2.11)  No(r,f) = N(r, ;1;> + N(n

where S(r, f) is given by (2.2).
From Lemma 2 and (2.11), we have

N(r,f) = Ny(r,f) + No(r, f)

o) omrr ) )
f fl—G+d) @td)f" = f

! 0
+2logr+m<r,g—> + log _g(_)

+ 28, f).
g g'(0) ")
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Substituting this inequality into (2.1) and noting
g _ 2etd)f” 3 31-f"
gz G+d)f'—f z+d @+d-f"’

( g') ( {(z+d)f”—f'}’> ( 1 )
m\r,—)=m\r, +m\r,
g +d)f"—f' z+d

( {f —G+ay
+m\r,—————————
fl=@e+d)

)+3log3+log2

and
22
g'(0)

= log

d(df"(0) — f'(O)d — £'(0)) ‘
2£"(0)d*(f'(0) — d) + 3£'(0)* — 3d>f"(0)* — 6df'(0) + 6d*f"(0)|’
Lemma 3 follows.

Using the procedure similar to [6] and applying Nevanlinna’s fundamental lemma
and its extension (cf. [6]) to the first four terms in S;(r, f), we obtain the fol-
lowing lemma.

Lemma 4. Suppose that f(z) satisfies the assumptions of Lemma 3 with R < ©
and suppose that in addition f # 0 and f' # z + d (d # 0) in |z] <R.

Then we have
R
(1 + B + log >
R-r

for 0 < r < R, where C is a positive numerical constant and

2.12) 1 M( —1—><C R
. og r,f R

-r

1
(2.13) B =1log'R + log" 1—15 + log™| £(0)| + log*|f'(0)] + log*|d| + log* |7|
1
+logh ———
ldf"©) — £'(0)|
+ log” : :
RF"OE(f'(0) = d) + 310 = 3d*f"(0) - 6df'(0) + 64’ ")
When d = 0, (2.2) and (2.5) can be replaced by

@.2) S'(r.f) = 2m<r, f7> + m(r, f7) + m(r, %Ej—;)

+ m(r,z) + 2m<r, l) + 3log 2 + log|f(0)|
z
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and

_ . 1 . 1
(25)' N1)(r,f) = N(Z(r9f) + N<r’ f/ - Z> + N<r’ Zf” — f’)

+ m(r, §—> + log |C\| + 21log™r
8

respectively, where C, is the first nonzero term of Taylor series of g(z)/g'(z) in
the neighborhood of the origin. Since

8 _ @f" = e = f) ]
g 22f"z~ =3z~ fHf" = ) =31 = e = )

! + 0(z%)
= - - Z
32

in the neighborhood of the origin,

(2.14) m(r, g') - m<r’ ef" - ff)/) m(r, (f - zy) (r, 1)
g Zfll f/ fl z z
+ 3log3 + log2

and using Nevanlinna’s lemma for the estimate of terms m(r, '/ f), m(r, f"/ f),
m(r,(f' — 2'/(f" — 2)) and m(r,(zf" — f')/(zf" — f')) which appear
in (2.2)" and (2.14), (2.12) remains true with

1 1
(2.13) B' =log'R + log" = + log™| f(0)| + log" ———.
R |£'(0)
3. Principal Results

Theorem 2. If f(z) is meromorphic in |zl < R (R < 1) and f(z) # O,
f'(@) # z + d there, then either |f(z)] < 1 or |f(z)| > C(R,d) uniformly in
|z| < Ry, where C(R,d) is a positive constant depending only on R and d, and

R
— min(1,|d|),

256 ifd #0,
(3.1) R =1 ‘
ifd=0.
256’

Proof. We suppose first that d # 0. If neither |[f(z)] < 1 nor |f(z)] > 1
uniformly in |z| < R,, then there are two points z' and z” such that |f(z")| = 1,
|f@@"] =1, |z'| <R, and || < R,. Thus by continuity a point z, must exist such
that

(3.2) |f@)l =1, |zl <R

We distinguish two cases which are mutually exclusive.
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Case A. One has

(3.3) Zlf‘”( )| = mm(l min(l, 4 uniformly in |z| < 4R,.

It follows that
1 8 2 f(])
|f| mln(l |d|) Jj=0 f

and so if m(r,z), ) and T'(r,z;,f) denote m(r, f(z + z;)) and T(r, f(z + z,)) re-
spectively, we have

(3.4) ( l><i< Lj))+l A 0<r<3R)
. m r,be = m\ r,z; 7 og min(l,Idl) s ( r -

j=0

(|Zl < 4R,)

Since N(r,z;,1/f) = 0, applying Nevanlinna’s fundamental lemma and its ex-
tension to f(z + z;) yields in (3.4)
1 1
+ log — + log*T(p, zl,f)}

1 1
T(r,z , —) < C{l + log — + log*
v f R, Jal

for R, < r < p < 3R,. Noting that T(p,z;,f) = T(p,zl,l/f) and using the im-
proved form of Bureau’s lemma (cf. [6]), we obtain

T(r,zl, %) < C{l + logR-l— + log* Al + log 3R31Ri r}, (R, <r<3R).
Therefore
log M(Rl, —1—> = log M(ZRl,zl, l) = 9T<é R,,zy, l) <CR,d).
f f 2 f
Case B. There exists a point z, such that
2 .
(3.5) S| < &n(;@ |zl < 4R,
j=0

We claim that there exists a point z, on the segment Zz,z; such that

1
_ " 1
min(l,ld‘) ’ 2 < |f (ZO)‘ < s

(3.6) |f'(zo)] <

|f"(z0)| =

min(1,|d/)

1
T ey

In fact, if |f"(z)] < 3/4 uniformly on Z,z, then the inequality (3.5) leads to

5
'@l =|f'"@)| + (ma_x|f"(§)|> |z, = 2| < — min(1,|d|)
tem 32



MEROMORPHIC FUNCTIONS 187

for any point z on z,z;,. Thus

€272

5
If@)l = [f@) + <max|f'(§)|)|22 —z| < o

This contradicts the fact that |f(z,)| = 1. Consequently, there exists a point z3
on zz; such that |f"(z3)] = 3/4 and |f"(z)] < 3/4 uniformly in Z;z;. Clearly,
|f'(z5)] < 5/32 min(1,|d]) and | f(z3)| < 5/32.

If | f"(z5)| = 8/min(1,|d|), we may choose z; to be the point z, in (3.6).

If | f"(z3)] < 8/min(1,|d|), we claim that |f"(z)] < 8/min(1,|d|) cannot hold
uniformly on z3z;. In fact, the opposite case implies

732

= e + (I;éax|f"'(C)|> - <1

and

3
If' @ =|f'@)| + (g;a_;clf”(ol)IZa -7 < 6

for any point z on z;z;. We then obtain

3
ol = sl + (mand @) - 2l < 2

€232

which contradicts the fact that | f(z;)] = 1. Thus there is a point z, on Z;z; such
that |f"(zy)| = 8/min(1,|d|) and |f"(z)] < 8/min(1,|d|) uniformly in z3z. It is
clear that for every point z on z3z,

1
lf"(Z)l = |f”(Z3)I - (Eg%'f’”({u)l)'% - Z| > —2-

and
1= 17+ (mand @) - < 1
Thus
F@I =17l + (max ] = 4 < 5 minc )
and

1
@l =176l + (mandr @i - 4 <

for every point z on z3z,. Thus in this case we may choose z, = z, in (3.6) and
the validity of (3.6) has been established in all cases.
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We now apply Lemma 4 to f(z) in |z — zo| < (63/64)R. Since

£zl < % £zl < 311'(—;’—"1'—),
1 - 1 - 4
ldf"Go) = f'@|  dlf @l = 1 @l dl
and
1
21" (20)d*(f'(@o) = d) + 3f'(20)" = 3d’f"(20)" + 6d°f"(20) — 6df " (zo)|

1

Rl EAP(d] = | f1 @) = 3 f @l = 3P| f @) = 6ldIP| £ (zo)l = 6ld]| ' (zo)l

1
= max <1, W),

we have

(o) 240> B
g 2 0 f

and hence

R 1 R 1
logM|— ,—) <logM -2-,20,}- < C(R,d).

Finally we consider the case of d = 0.

If | f(z)] > 1/2 holds uniformly in |z| < R,, then the conclusion of Theorem 2
is also true. Otherwise there is a point z; such that

1
ifE@l=5. <R

When |f'(z)] < 1 holds uniformly in |z — zj| < 2R,, we have

@l =176+ (masr o)l - <

in |z — zj| < 2R,. Thus
M®R,,f)= MQRyz,f) <1.
In the opposite case, there is a point z} in |z — zj| < 2R, such that | f’(z})| = 1
and that |f'(z)] < 1 in z{z5. (If |f'(z})| = 1, then we choose the point z{ as z5.)
Thus |f(z3)| < 1.

We now apply Lemma 4 with (2.13)' to f(z) in |z — 23| < (127/128)R. It
follows that
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R 1
log M P < C®)

and hence

1 M(R 1><l M(R ’1><C(R)

0 ——]=lo -, 25— .

M\ 2s67) =B M\

Theorem 3. Let & be a family of meromorphic functions in a region D. If,

for every function f(z) of ¥, both f(z) and f'(z) have no fix-points in D, then
% is normal there.

In fact, for an arbitrary point z, of D, there is a positive number & such that
the disk |z — zo| < 3 is contained in D. Now we set R = min(1,3) and consider
another family % which consists of functions

82 = f(zo+ 2) = (20 + 2), VfeF.
Clearly, every g(z) is meromorphic in |z| <Rand g(z) #0,8'@ #z+ (zp— 1)
there. According to Theorem 2, 4 is normal at z,. Thus % is also normal at z,.
4., Caseof k = 2

The preceding results can be generalized from f'(z) to f®(z) (k = 2). We
formulate here only the lemmas and the theorems, since the proofs are similar.

Lemma 1'. Let f(z) be meromorphic in |zl < R (0 < R = ). If f(0) # 0,
w; f®0) # d and df*P0) — fP0) # 0, then we have

- 1 1
T(r,f) < N(r,f) + N(r, ']‘;) + N(r, f(k) - d))

1
- N(r, (Z n d)f(k+1) _ f(k)) + S(r9f)

for 0 < r <R, where

3 ﬁ) < f(k+1)) < f(k+1) -1 )
S(r,f)—2m<r, 7 + m|r, 7 +m r’_——_—f("’—(z+d)

FO f®©) - d) ‘
df*0©) — £O0)|

1
+m(r,z+d) + 2m<r, > + 3log 2 + log
z+d

Lemma 2'. Let f(z) be given by Lemma 1' and
{(Z + d)f(k+l) — f(k)}k+1
8(2) = k+2 onket2
(z+d)"H@z+d)— [
If g(0) # 0,%; g'(0) # 0, d # 0, then we have
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Nl)(r9f) = N(Z(r,f) + N( f(k) (Z + d)> < (Z + d)f(k+1) f(k))

+ m( g_ . r
g'(0) ldl

Lemma 3'. Suppose that f(z) is meromorphic in |zl < R (0 < R = «). If
£0) # 0,00 F®0) # d; df**P0) — f®0) # 0, d # 0 and
2£420)d*(fFP©0) — d) + 3£90)

— 3d* % (0)* + 6d*f*TP(0) — 6df*©(0) # 0,

then we have

T(r,f)< 3N<r, —;—) + 4N<r

for 0 < r < R, where

B ﬁ) < f(k+l)) ( f(k+1) -1 >
S(r,f) = 6m<r, 7 + 3m|r, 7 + 4m| r, ——__f(k) 1 d)

m<r e+ d)yfen - f®y ) +2log"
ROV d |

+ log*|d| + 91og 2 + log 3 + log(k + 1) + 2 log (k + 2)
1
ldf“00) = FO0)
1
og RS D0) fP0) — d) + 3£ P0) — 3d* < I0) + 647 F<D(0) — 6dfP(0)|

Lemma 4'. Suppose that f(z) satisfies the assumptions of Lemma 3' with
R < ® and suppose that in addition f # 0, f® # z + d(d # 0) in || < R.

Then we have
1 R R
logM|r,— ) <C; 1+ B+ log
f R-—r R—r

for 0 < r < R, where

1
, m) + 8. f)

1
) +3m(r,z +d) + 7m<r,
z+

+ 3 log|f(0)| + 4 log|f®(0) — d| + 2 log

=log"R + log - + log*|d| + log" — + log™| £ (0)|

| |d|
1 + log” !
790 % [dfe0) - £90))
1
2FF D02 (FP(0) — d) + 37 P(0) — 3d° 7 EDOF + 6421 D(0) — 6dfP(0)]’

+ log*

+log”
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when d = 0, B can be replaced by
1
B’ =1og*R + log”* = + log™| £ (0)| + log™| f®(0).

Theorem 2'. If f(z) is meromorphic in |zl <R R < 1) and f # 0, f® #
z + d there, then either |f| < 1 or |f| > C(k,R,d) uniformly in |z| < R,, where
C(k,R,d) is a positive constant depending only on k, R and d, and R, is given by
(3.1).

Theorem 3'. Let ¥ be a family of meromorphic functions in a region D. If
for every function f(z) of %, both f(z) and f®(z) have no fix-points in D, then
% is normal in D.

Combining Theorem 3 and Theorem 3', we obtain Theorem 1.
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