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A b s t r a c t .  Let f ( z )  be a transcendental meromorphic function in the finite 
plane and k be a positive integer. Then we have 

< 2 k + 2  
Y. J(a, ilk)) = 2k + 1 

aEC 

Moreover, if  the order off(z)  is finite, then we also have 

y, j ( a ,  ftk)) < 2 2k(1 -- O(oo, f ) )  
aet~ 1 + k(1 - O(o% f ) )  ' 

where J(a,  ftk)) denotes the deficiency of the value a with respect to ftk) and 
O(oo, f )  is the ramification index of oo with respect to f.  

1. Introduction 

Suppose that f(z) is a transcendental meromorphic function in the finite plane 
and a is a complex value which may be infinity. By R. Nevanlinna [16], [8], if 

J(a, f )  = lim inf m(r '  1 / ( f -  a ) )  

r ~  T(r, f )  

g ( r ,  1 / ( f  -- a)) 
--- 1 - lim sup 

,-oo T(r, f )  

is positive, a is called a deficient valuexfff(z) and J(a, f )  is its deficiency. (When 
a ---- oo, m(r,  1 / ( f -  a)) and N(r,  1 / ( f -  a)) in the definition of J(a, f )  should be 
replaced by m(r,  f )  and N(r,  f )  respectively.) The most important and classical 
result is that the set ofaU deficient values off(z) is at most countable and the total 
deficiency does not exceed two (deficient relation [6], [8]). The upper bound of 
two is sharp in general. 

When the order off(z) is less than 1, Edrei [3] obtained a precise estimate for 
the total deficiency by using the spread relation proved by Baernstein [ 1 ]. The 
deficiency problem, however, is still open for meromorphic functions of order 
bigger than 1, although a suitable bound has been suggested by Drasin and 

Weitsman [2]. 
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Now we discuss the precise estimate of the total deficiency, not for the function 
f ( z )  itself, but  for its derivatives. 

Let k be a positive integer. Hayman [5] pointed out that the inequality 

k + 2  
2 6(a, ilk)) <_ _ _  

~ec k +  1 

holds for any transcendental meromorphic  function f (z) .  In 1971, Mues [7] 
improved this result to 

k 2 + 5 k + 4  
6(a, fck)) __< 

aec  k 2 + 4k + 2 " 

In this paper, we shall prove 

T h e o r e m  1. Let f ( z )  be a transcendental meromorphic function in the finite 
plane and k be a positive integer. Then we have 

2 k + 2  
Y~ 6(a, f(k)) < _ _  

.Ec 2k + 1 

It is clear that for any positive integer k, we always have 

2 k + 2  k 2 + 5 k + 4  k + 2  
- - <  <. 
2 k +  1 k 2 + 4 k + 2  k +  1 

and 

k 2 q- 5k + 4 2k + 2 k + 2 k 2 + 5k + 4 

k 2 + 4 k + 2  2 k + l  k + l  k 2 + 4 k + 2 "  

Although Theorem 1 gives a much better estimate for ~aEC $(a, ~k)), it does not 
include $ (~ ,  ilk)). For this reason, we prove another estimate. 

T h e o r e m  2. Let f ( z )  be a transcendental meromorphic function o f  finite 
order in the finite plane and k be a positive integer. Then we have 

J(a,  ilk)) ~ 2 
2k(1 - O(~ ,  f ) )  

1 + k ( 1  - 0 ( ~ ,  f ) )  

where 0(oo, f )  is the ramification index o f  ~ with respect to f ,  defined by 

2V(r, f )  
- - ,  0 ( o o ,  f )  = 1 - -  lim~_~sup T(r, f)  

Finally we will prove a theorem on uniqueness. 
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2. A l e m m a  

In order to prove Theorem 1, we need the following lemma which is a rewritten 

form of  a lemma due to Frank and Weissenborn [4]. 

L e m m a  1. Suppose that f(z)  is a transcendental meromorphic function. 
Given any positive number e, we have 

N(r , f t~+~))>(k+ 1 ) ]~ ( r , f ) - -N( r , f ) - - eT ( r ,  ftk))--S(r,f(k)), (1) 

where 

S(r,  f(k)) = O {log(rT(r, f(k)))}, 

except for r in a set with finite linear measure. 

In fact, according to Frank and Weissenborn [4], we have 

where 

, 1 )  
kl~(r, f )  < N r, + (N(r, f )  - N(r, f ) )  + -~ N r,fl-~+l~ 

+ -~ (N(r, f )  - N(r, f ) )  + m r, (flk+l))t+l ' 

W ( z )  = W ( 1 ,  z ,  z 2 ,  . . . , z k  % f ( z ) ,  z f ( z ) ,  . . . , z t f ( z ) )  

denotes the Wronskian and I is a positive integer such that l > 3(k + 1)/e. 

Noting 

N r, < r(r, f(k+l)) .q_ O(1) 

and 

W(z) 

[ flk+,)'~ 
< 2 T ( r , f  (*)) + m ~ r , - - ~ - )  + 0(1),  

N(r, f )  < T(r, ftk)) 

__ W(1, z, z 2 . . . . .  zk +t) �9 W ( ~  k +l+l), ( z f ) ( k  +l+l), . . . , ( z l f )  (k+l+l)) 

( ~ k  + l))l + , (2k + ~))t + l 

[~k+,+, (zf)(k+,+,, (z,f)(k+,+,~ 
- - - w o  z,z  ~ . . . .  z*+'). Wl( .~-z~ , , , y ( ~ + , ) , . . . ,  ~ / '  

the inequality (1) follows immediately. 
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3.  C a s e  o f  t w o  t e r m s  in  T h e o r e m  1 

At first, we shall show [9] 

2 k + 2  

so that 

Thus 

(1 +~-k){(1 N(r, 1/(flk)--aO))+(1 _N(r,  1/(flk)--a2))l ~ 
T(r, ilk)) T-~r, 7k)-) "] J 

2 S(r, fig)) 
< 1 + + + r ( r ,  

J(al, ilk)) + J(a2, ilk)) < ~ _  

Since e can be arbitrarily small, (2) is proved. 

2 k + 2  

2 k + l  
~-e. 

(2) J(al, ilk)) + J(a2, f(k)) < 2k +-'~--]- ' 

where a~ and a2 are two finite distinct complex values. 
We apply the Nevanli.nna Second Fundamental Inequality to flk)(z) and three 

complex values a~, a2 and o0: 

(3) 

r 1 - - N ( , ~ - ~ ) )  +S(r, flk)). 

Substituting (1) in (3) and noting 

N(r, f(k)) > N(r, f )  + k_N(r, f), 

we obtain 

1 1 
,4, )q ( r , f , < -j-~ (N ( r , f(k) l a , ) + N (r , ftk) - a ) } + e T (r , flk) , + X ( r , flk) ) . 

Combining (3) and (4), we have 

1 1 
T(r, ilk))< ( 1 +  "~Tc){N(r, flk)- a,) +N(r '  fl  k,1 a;)} + eT(r' fig))+ S(r, ilk),. 
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4. P r o o f  o f  T h e o r e m  1 

If aj (j = 1, 2 , . . . ,  q) are q distinct finite complex numbers, then we have 

~ ( fl-~l a )  (~--~+l)) (5) m r, -- < m r, + S(r, flk)). 
y - I  

Denote by e the union of exceptional sets corresponding to inequalities (1) and 
(5). Then e has finite linear measure. 

We consider two cases which are mutually exclusive. 

N(r, f )  1 
(1) lim,_~sup T(r, ftk)) < 2k + 1 

r~e 

In this case, we have 

(6) 

(r 'a) m < T(r, f l k + l ) ) - N  r, + S ( r , f  tk)) 
j -  t - ~  -- = 

__< r ( r , . rk ) )  + ~(r ,  f )  - U r, + S(r, 

Thus 

q T(r, ilk)) + IV(r, f )  
Y~ J(aj, ilk)) < lim sup 

j - I  , - ~  T(r, ilk)) 
r(Ee 

_ - < 1 + - -  
2 k + l  

]V(r, f )  1 
(2) lira sup fig)) >-- - -  ,-| T(e,  2k + 1 

r~e 

Combining (1) and (6), we obtain 

r, 1 aj) m < T(r, ftk)) _ kN(r,  f )  + N(r ,  f )  + eT(r, ftk)) + S(r ,  ftk)) 
j - t  ~E--  = 

2 T(r, ilk)) _ 2kN(r, f )  + eT(r, f ( k ) )  ..~ S(r,  f (k ) ) .  

Therefore 

5(aj, flk~) < lim inf ~2 -- zx" .,.,N(r'f),r,~ ] 
j - ,  "-| t - t r ,  j'k))~ 

r~e 

S(r, ~k~) 
+ e + lira sup 

r--~ T(r, ftk)) 
r~e 

2 k + 2  
< -t-~. 
- 2 k +  1 
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Since e can be arbitrarily small, we also have 

q 2 k + 2  
Y~ J(aj, ilk)) < ~ .  

j=~ 2 k +  1 

Because q can be arbitrarily large, the proof  of Theorem 1 is complete. 

5.  P r o o f  o f  T h e o r e m  2 a n d  c o r o l l a r i e s  

Similar to the case (2) of the Proof  of Theorem 1, we have 

r 1 

< 2T(r, fig)) _ 2kN(r, f )  + eT(r, ilk)) + S(r, ftk)). 

Thus 

(7) 

q 
r 2 k)) -~- ~ (~(aj, 2 k)) 

jffil 

2kN(r, f )  S(r, flk)) ~ 
_--<liminf 2 + e 4  

r - - o o  ( T(r, ilk)) T(r, flk))J 

< lim inf  ~2 2kN(r, f )~ lim sup fe S(r, flk))~ 
= r--oo I. T ~ r ~ k - ~ ) J  "JV r--~ t + T ( r , f ~ k ) ) J  

/V(r, f )  
ffi<_ 2 -- 2k lim sup - -  + e. 

,-| T(r, 2 k)) 

Since 

/V(r, f )  > N(r ,  f )  

T(r, ftk)) = T(r, f )  + kN(r, f )  + m (r, flk)/ f )  ' 

we have 

(8) 

lim sup - -  
N(r, f )  N(r, f )  

>-- lim sup 
T(r, ilk)) -- .--~ T(r, f )  + kN(r, f )  + m(r, ftk)/ f )  

> 

N(r, f )  
lim sup 

~-o~ T(r, f )  

k N(r, f )  
lim,_~sup 1 + T(r, f )  

_ _  + r e ( r ,  SW f)+l 
T(r, f )  J 

1 -- O ( ~ ,  f )  

l + k(1 - O(qo, f ) )  
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Combining (7) and (8), let e tend to zero and q tend to the infinity. We obtain 

finally 

2k(1 - O(E ,  f ) )  
6(a, j,,xk)) =< 2 - 

~ e  1 + k(1 - 0 ( ~ ,  f ) )  " 

The following corollaries can be deduced from Theorem 2 immediately. 

C o r o l l a r y  1. Suppose that f (z)  is transcendental meromorphic and of  finite 
order in the finite plane. I f  O( oo, f )  < 1, then we have 

lim { ~ 6(a, flk))t = O. 
k--o~ a 

C o r o l l a r y  2. Let f (z)  be transcendental meromorphic and of  finite order. I f  
0(o% f )  = 0 (i.e. lim sup,_~o(~'(r, f ) /T(r ,  f ) )  = 1), then for any positive integer 
k, we have 

2 
Y. 6(a, ilk)) < _ _  

asd k + 1 " 

C o r o l l a r y  3. Let f (z)  be transcendental meromorphic and of  finite order. I f  
there exists a positive integer ko such that Laee6(a, flk~)= 2, then we have 
0(oo, f )  = 1 (i.e. N(r, f )  = o(T(r, f))  as r tends to ~). 

6. Problem of uniqueness 
Using a similar idea, we are going to prove a theorem on the problem of  

uniqueness. In order to do it, we prove a preliminary lemma. 

L e m m a  2. Let f (z)  be a transcendental meromorphic function in the 
plane and aj (j = 1, 2 , . . . ,  q) be q ( > 2) finite distinct complex values; then 
we have 

(9) 

q - l -  q - 1  } T(r, flk)) 
k q + q -  I 

<j_,~ N r, flk ) -  + eT(r, flk)) + S(r, ftk)), 

where e is any small positive number. 

P r o o f .  Applying the Nevanlinna Second Fundamental Theorem to f (z )  and 
q + 1 complex values aj ( j  = 1, 2 , . . . ,  q) and ~ ,  we have 
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-- N r, + S( r ,  f~k)). 

Substituting (1) in (10) and noting 

T(r, f~k)) > N(r ,  f )  + k?~(r, f ) ,  

we obtain 

'/r N(r '  f )  < kq + q _ 2 j~l N ' f~k) -- + eT(r'  flk)) + S(r '  flk))" 

Combining this inequality with (10), we deduce that 

ia) 

-- N(r,~--~+~o) + eT(r,  flk)) + S(r ,  flk)). 

Dividing every term by 1 + 1/(kq + q - 2), we obtain the inequality (9). 
Now, suppose that fdz)  and f2(z) are two transcendental meromorphic func- 

tions in the finite plane. Let aj (3" = 1, 2 , . . . ,  q) be q ( > 4) distinct finite complex 
values and k be a positive integer. We denote by N~.g~(r, a:) (j = 1, 2 . . . .  , q) the 
counting function with respect to all the non-common zeros off~k}(Z) -- aj and 
f~k}(Z) -- aj in I z I =< r. Multiple zeros should be counted with their multiplicities. 
Under  these notations, we have 

T h e o r e m  3. I f  

(11) ~ { 1 -  lim sup N~k~(r, ay) i} q - - 1  
j -  l r-| T(r,  f~k)) + T(r,  f~k) > 3 -~ kq + q - 1 ' 

then we have f~k)(z) ~ f~k)(z). Therefore f l ( z )  ~ f2(z) + Pk-  I(Z), where Pk- ,(Z) is a 
polynomial  o f  degree k - 1. 

In fact, iff~ k) is not identical tof~ k), we apply Lemma 2 tof~ and f2 respectively 
and have 
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q- -1  
{ q - - 1  kq -+q -1"} T(r' f~k)) 

q( <j~_, N r,-~)-  + eT(r, f~k)) + S(r, j~k)) (l = 1, 2). 

Then we add these two inequalities and note 

( ( 1-__ ) ( 1 aj)} q 
U r , f ~ k  ) " + U  r,j~k)- - -~ Y~ {N~k~(r, ai)+2N~k)(r, aj)}, 

j = l  aj/ j - x  

where N~k)(r, aj) (j = 1, 2 , . . . ,  q) denotes the counting function with respect to 
all the common zeros off~k)(z) -- aj and f~k)(z) -- aj in I z I ----< r. Since f~k) is not 
identical to f~k), every common  z e r o  o f f ~  k) - aj and f~k) _ aj must be a pole of 
1/(f~k) _ f~k)), SO that 

Thus 

N~k)(r, a,) < N(r, 1 ) 
j_, , -  f?)  A 

< T(r, f~k)) + T(r, f~k)) + O(1). 

q - 3 -  q -  1 } kq + q - 1 (T(r, f~k)) "Jr- T(r, Ak))) 

q 
< Y, Ulk:)(r, aj) + e(T(r, f~k)) + T(r, j~k))) + O{log(rT(r, f~k))T(r, f~k)))}, 

j--I 

except for r in a set with linear measure zero. This inequality yields that 

Y. {1 - lim sup Nlk~(r, aj) ~ < 3 + q -- 1 
j-  1 r-~ T(r, f~k)) ..~ T(r, j~k) )J  ---- kq + q - 1 ' 

which contradicts (11). Therefore the proof  of  Theorem 3 is complete. 

R e m a r k .  An interesting problem is whether the bounds of  Theorem 1 and 

Theorem 2 are sharp or not. 
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