ENGLISH    
 
  中国科学院    
 
 
     
 
首 页  
组织机构
科研成果
研究队伍
人才培养
国际交流
信息公开
人才招聘
    现在位置:首页 > 学术报告
 

 

Academy of Mathematics and Systems Science, CAS
Colloquia & Seminars

Speaker:

Prof. Yunping Jiang,The City University of New York and NSF,USA

Inviter:  
Title:
Order of Oscillating Sequences, MMA-MMLS, and Sarnak's Conjecture
Time & Venue:
2018.7.17 16:00-17:00 N913
Abstract:
In this talk, I will explain several concepts, a log-uniformly oscillation sequence, an oscillation sequence, an oscillation sequence of higher order, a minimal mean attractable (MMA) dynamical system, a minimal mean-L-stable (MMLS) dynamical system. Equicontinuous dynamical systems are clearly MLS. Feigenbaum dynamical systems are not equicontinuous globally but when they are restricted on minimal sets still equicontinuous. Furthermore, in this talk I will give two non-trivial examples of dynamical systems which are not equicontinuous even when they are restricted on minimal sets but MMLS. We will prove that any oscillating sequence is linearly disjoint with all MMA and MMLS dynamical systems. One of the consequences is that Sarnak’s conjecture holds for all MMA and MMLS dynamical systems. There are dynamical systems which are not MMLS. Therefore, we need to use the concept of an oscillation sequence of higher order. The Mobius sequence is an example of an oscillation sequence of higher order due to a result of Hua. In this talk, I will give another interesting example of an oscillation sequence of higher order. Furthermore, I will prove that any oscillation sequence of order $d\geq 2$ is linearly disjoint with all affine distal maps of the $d$-torus.
 

 

附件下载:
 
 
【打印本页】【关闭本页】
 
研究院电子政务平台    中科院邮件系统    图书馆    会议服务平台
 
新闻动态 | 学术期刊 | 创新文化 | 党建文化 | 校友会 | 网站地图 | 联系我们
版权所有 © 中国科学院数学与系统科学研究院  京ICP备05002806号  京公网安备110402500020号
地址:北京市海淀区中关村东路55号  邮政编码:100190
电话:86-10-82541777  Fax:86-10-82541972  Email:contact@amss.ac.cn