科研进展
   新闻动态
      科研进展
      综合新闻
      传媒扫描
现在位置:首页 > 新闻动态 > 科研进展
凯勒度量流的切流(简旺键)
2024-02-04 | 编辑:

  We improve the description of $\mathbb{F}$-limits of noncollapsed Ricci flows in the K?hler setting. In particular, the singular strata $\mathcal{S}^k$ of such metric flows satisfy $\mathcal{S}^{2j}=\mathcal{S}^{2j+1}$. We also prove an analogous result for quantitative strata, and show that any tangent flow admits a nontrivial one-parameter action by isometries, which is locally free on the cone link in the static case. The main results are established using parabolic regularizations of conjugate heat kernel potential functions based at almost-selfsimilar points, which may be of independent interest. 

    

  Publication: 

  Journal für die reine und angewandte Mathematik (Crelles Journal)  

  https://doi.org/10.1515/crelle-2023-0071 

    

  Author: 

  Max Hallgren 

  Department of Mathematics, Rutgers University, New Brunswick, NJ 08904, USA 

   

  Wangjian Jian 

  Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, P. R. China 

  Email: wangjian@amss.ac.cn 

附件下载:
 
 
【打印本页】【关闭本页】
电子政务平台   |   科技网邮箱   |   ARP系统   |   会议服务平台   |   联系我们   |   友情链接